

Fourth Semester B.E. Degree Examination, June/July 2018 Applied Thermodynamics

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

$\dot{P}ART - A$

1 a.	Define	the	following:	
------	--------	-----	------------	--

- i) Higher and lower calorific values
- iii) Dew point temperature
- ii) Combustion efficiency
- iv) Adiabatic flame temperature

v) Percent excess (air.)

(10 Marks)

- b. One kg of ethane (C₂H₆) is burnt with 90% of theoretical air. Assuming complete combustion of hydrogen in the fuel determine the volumetric analysis of the dry products of combustion.

 (10 Marks)
- 2 a. What is air-standard cycle? State the assumptions made in the analysis of air standard cycle.
 - b. Show that if an Otto cycle works between the temperature limits T₃ and T₁, the compression

ratio for maximum workdone/cycle/kg is expressed as, $r_v = \left[\frac{T_3}{T_1}\right]^{\frac{1}{2(v-1)}}$ where r_v is

compression ratio.

(05 Marks

- c. An engine operating on the ideal diesel cycle has a compression ratio 16. Heat is added during constant pressure process upto 8% of the stroke. If the engine inhales 0.04 m³/s at 101 kPa and 25°C, determine:
 - i) The maximum pressure and temperature in the cycle.
 - ii) The thermal efficiency of the engine.
 - iii) The power developed.

(10 Marks)

3 a. Derive an expression for indicated power of multi cylinder of engine for Morse test.

(04 Marks)

- b. Define: i) Mean effective pressure
 - ii) Specific fuel consumption
 - iii) Volumetric efficiency

(06 Marks)

- c. A four cylinder 4-stroke petrol engine has a bore of 60 mm and a stroke of 90 mm. Its rated speed is 2800 rpm and it is tested at this speed against brake which has a torque arm of 0.37 m. The net brake load is 160 N and the fuel consumption is 8.966 litres/hr. The specific gravity of petrol used is 0.74 and thas a lower calorific value of 44100 kJ/kg. A Morse test is carried out and the cylinders are cut out in the order 1, 2, 3, 4 with corresponding brake loads of 110, 107, 104 and 100 N respectively. Calculate for this speed:
 - i) Brake power

- ii) Brake mean effective pressure
- iii) Brake thermal efficiency
- iv) Mechanical efficiency

(10 Marks)

- 4 a. Explain the effect of variation of pressure and super heat on Rankine cycle efficiency with the help of a T-S diagram. (10 Marks)
 - b. In a Rankine cycle the steam at inlet to turbine is saturated at a pressure of 35 bar and the exhaust pressure is 0.2 bar. Determine:
 - i) The pump work

- ii) The turbine work
- iii) The Rankine efficiency
- iv) The dryness at the end of expansion.
- Assume flow rate of steam is 9.5 kg/s.

(10 Marks)

10ME/AU43

- $\frac{\mathbf{PART} \mathbf{B}}{\mathbf{Explain}}$ Explain the condition for minimum work for a reciprocating compressor and also define 5 isothermal efficiency based on the indicator diagram.
 - b. Derive an expression for the volumetric efficiency of reciprocating air compressor. (05 Marks
 - c. A single stage single acting air compressor delivers 0.6 kg of air per minute at 6 bar. The temperature and pressure at the end of suction stroke are 30°C and 1 bar. The bore and stroke of the compressor are 100 mm and 150 mm respectively. The clearance is 3% of the swept volume. Assuming the index of compression and expansion to be 1.3, find:
 - i) Volumetric efficiency of the compressor
 - ii) Power required if the mechanical efficiency is 85% and
 - iii) Speed of the compressor (rpm).

(10 Marks

- What is the role of combustion chamber in gas turbine plant? Explain how the actual gas turbine cycle differs from the theoretical cycle. (06 Marks)
 - Draw the flow diagram and h-s diagram for open cycle gas turbine with perfect intercooling (04 Marks)
 - In a constant pressure open cycle gas turbine air enters at 1 bar and 20°C and leaves the compressor at 5 bar. The maximum cycle temperature is 680°C, pressure loss in the combustion chamber is 0.1 bar. Isentropic efficiencies of compressor and turbine are 85% and 80% respectively, $\gamma = 1.4$ and $C_p = 1.024$ kJ/kgK for air and gas. Find:
 - The quantity of air circulation if the plant develops 1065 KW.
 - ii) Heat supplied per kg of air.
 - iii) The thermal efficiency of the cycle.

- Derive an expression for COP for an air refrigeration system working on reversed Carnet
- A refrigeration system of 10.5 tonnes capacity at an evaporator temperature of -12°C and condenser temperature of 27°C is needed in a food storage locker.\The refrigerant ammonia is subcooled by 6°C before entering the expansion valve. The vapour is 0.95 dry as if leaves the evaporator coil. The compression in the compressor is pradiabatic type. Using p-h char find:
 - Condition of volume at outlet of the compressor,
 - ii) Condition of vapour at entrance to evaporate
 - iii) C.O.P
 - iv) Power required in KW

Neglect valve throttling and clearance effect

(10 Mark)

- With a neat sketch describe the working of summer air conditioning system for hot and dr 8 (07 Mark weather.
 - Define: b.
 - i) Dry bulb temperature
 - ii) Wet bulb temperaturé

iii) Relative humidity:

(03 Mark

Air at 20°C, 40% RH is mixed adiabatically with air at 40°C, 40% RH in the ratio of 1 kg c the former with 2 kg of the latter (on dry basis). Find the final condition of air. (10 Mark